

Separation of Variables 分离变量 (p406)

Consider a differential equation that can be written in the form

$$M(x) + \frac{N(y)dy}{dx} = 0$$

$M(x)$ is a continuous function of x alone

$N(y)$ is a continuous function of y alone.

$$M(x) + \frac{N(y)dy}{dx} = 0 \Rightarrow M(x)dx = -N(y)dy$$

Such equations are said to be **separable**, and the solution procedure is called **separation of variables** (分离变量).

Original Differential Equation Rewritten with Variables Separated

$$\begin{aligned} x^2 + 3y \frac{dy}{dx} = 0 & \quad 3ydy = -x^2dx \\ (\sin x)y' = \cos x & \quad dy = \cot x dx \\ \frac{xy'}{e^y + 1} = 2 & \quad \frac{dy}{e^y + 1} = \frac{2dx}{x} \end{aligned}$$

Example: Find the general solution of

$$\frac{(x^2 + 4)dy}{dx} = xy$$

Solution: To begin, note that $y = 0$ is a solution. To find other solutions, assume that $y \neq 0$ and separate variables as shown.

$$\Rightarrow (x^2 + 4)dy = xydx$$

$$\frac{dy}{y} = \frac{xdx}{x^2 + 4} \quad \text{Separate variables}$$

$$\int \frac{dy}{y} = \int \frac{xdx}{x^2 + 4}$$

$$u = x^2 + 4 \Rightarrow du = 2xdx \quad (u > 0)$$

$$\int \frac{dy}{y} = \int \frac{(1/2)du}{u}$$

$$\ln|y| = \frac{1}{2}\ln(u) + C_1 = \frac{1}{2}\ln(x^2 + 4) + C_1$$

$$|y| = e^{C_1} \sqrt{x^2 + 4} \Rightarrow y = \pm e^{C_1} \sqrt{x^2 + 4}$$

$$y = C \sqrt{x^2 + 4}$$

Let $C = \pm e^{C_1}$ (whether $C = 0$?)

REMARK: check solutions throughout this chapter.

$$y = C \sqrt{x^2 + 4}$$

$$\Rightarrow \frac{dy}{dx} = C \frac{d}{dx} \sqrt{x^2 + 4} = C \left[\frac{1}{2} (x^2 + 4)^{\frac{-1}{2}} \cdot 2x \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{x \cdot C}{\sqrt{x^2 + 4}} = \frac{x \cdot C \sqrt{x^2 + 4}}{x^2 + 4} = \frac{xy}{x^2 + 4}$$

$$\Rightarrow \frac{(x^2 + 4)dy}{dx} = xy$$

结论：可分离变量的微分方程，经常需要检查 $y=0$ 是否是一个解。

In some cases, it is not feasible to write the general solution in the explicit form $y = f(x)$. The next example illustrates such a solution. Implicit differentiation can be used to verify this solution.

Example: Given the initial condition $y(0) = 1$, find the particular solution of the equation

$$xy \, dx + e^{-x^2} (y^2 - 1) \, dy = 0$$

Solution: $xy \, dx = -e^{-x^2} (y^2 - 1) \, dy$

$$\frac{xdx}{-e^{-x^2}} = \frac{(y^2-1)dy}{y} \Rightarrow -xe^{x^2}dx = (y - \frac{1}{y})dy$$

$$-\int xe^{x^2}dx = \int \left(y - \frac{1}{y}\right)dy \Rightarrow \frac{-1}{2} \int e^{x^2}dx^2 = \int \left(y - \frac{1}{y}\right)dy$$

$$\frac{-1}{2}e^{x^2} = \frac{y^2}{2} - \ln|y| + c$$

From the initial condition $y(0) = 1$, you have

$$\frac{-1}{2}e^0 = \frac{1}{2} - \ln 1 + c \Rightarrow \frac{-1}{2} = \frac{1}{2} - 0 + c$$

$$c = -1$$

So, the particular solution has the implicit form

$$\frac{-1}{2}e^{x^2} = \frac{y^2}{2} - \ln|y| - 1 \Rightarrow y^2 - \ln y^2 + e^{x^2} = 2$$

Please notice that $y = 0$ can also satisfy the differential equation but not meet the initial condition $y(0) = 1$.

Example: Find the equation of the curve that passes through the point $(1,3)$ and has a slope of y/x^2 at any point (x, y) .

Solution: $y' = y/x^2$

$$\frac{dy}{dx} = \frac{y}{x^2}$$

$$\frac{dy}{y} = \frac{dx}{x^2} \quad (y \neq 0)$$

$$\int \frac{dy}{y} = \int \frac{dx}{x^2}$$

$$\ln|y| = \frac{x^{-1}}{-1} + C = \frac{-1}{x} + C$$

the curve that passes through the point $(1,3)$, so that $y > 0$.

$$\ln y = \frac{-1}{x} + C$$

$$\ln 3 = \frac{-1}{1} + C$$

$$C = \ln 3 + 1$$

The particular solution is

$$\ln y = \frac{-1}{x} + \ln 3 + 1$$

$$\text{or } y = 3e^{(x-1)/x}$$

为什么 $x > 0$, Ron Larson Cal 10th P416. 不明白?

A common problem in electrostatics, thermodynamics, and hydrodynamics involves finding a family of curves, each of which is orthogonal to all members of a given family of curves.

The right figure shows a family of circles

$$x^2 + y^2 = C \quad \text{Family of circles}$$

each of which intersects the lines in the family

$$y = kx \quad \text{Family of lines}$$

at right angles. Two such families of curves are said to be **mutually orthogonal**, and each curve in one of the families is called an **orthogonal trajectory** of the other family.

Example: Describe the orthogonal trajectories for the family of curves given by

$$y = C/x \quad C \neq 0$$

Solution

$$y = C/x \Rightarrow xy = C \quad \text{original family curves}$$

$$y + x \frac{dy}{dx} = 0$$

$$x \frac{dy}{dx} = -y$$

$$\frac{dy}{dx} = -\frac{y}{x} \quad \text{slop of given family}$$

Because dy/dx represents the slope of the given family of (x, y) curves at it follows that the orthogonal family has the negative reciprocal slope x/y . So,

$$\frac{dy}{dx} = \frac{x}{y} \quad \text{slop of orthogonal family}$$

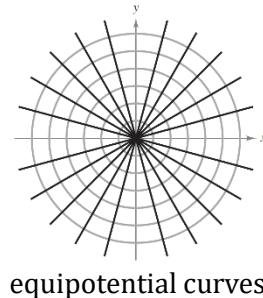
Solve this differential equation

$$ydy = xdx$$

$$\int ydy = \int xdx$$

$$\frac{y^2}{2} = \frac{x^2}{2} + C_1$$

$$y^2 - x^2 = K \quad \text{orthogonal family}$$



equipotential curves

Exercise: Calculus 10th, Ron Larson,
P421: 7,8,11,12,13,14,21,22,23,24,25,26,43,44

